

## STRAND ASSOCIATES ${ }^{\oplus}$

Excellence in Engineering ${ }^{\text {sw }}$
Since 1946

# Alex Road Traffic Study 

City of West Carrollton, OH
April 23, 2024
CARROLLTON

## Agenda - Alex Road Traffic Study

- Study Location and Objectives
- Purpose and Need
- Crash Analysis
- Traffic Analysis
- Alternatives
- Summary


ASSOCIATES

Study Location and Objectives

- Alex Rd from Kimberly Ln to Watertower Ln
- Does not include SR 725
- Analyze safety and capacity
- Evaluate alternatives (5-lane and 3-lane)
- Develop opinions of probable construction cost
- Prepare report and identify next steps


Study limits are along Alex Rd between Kimberly Ln and SR 725

## Purpose and Need

- Improve pavement condition and implement countermeasures to reduce the potential for crashes


Alex Rd ADT = 17,500 (2009)


Alex Rd ADT = 12,500 (2022)

## Purpose and Need

- Correct substandard lane width
- Existing pavement width $=48 \mathrm{ft}$
- Minimum standard pavement width $=57 \mathrm{ft}$

URBAN ROADWAY CRITERIA LANE \& SHOULDER WIDTHS ${ }^{(4)}$

| Functional Classifcation | Locale | Minimum Lane (ft.) | Minimum Curbed Shoulder Width <br> (ft.) (F) |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | w/o Parklng | w/ Parklng (E) |
| Interstate, Other Freeways, and Expressways (J) | All | 12 | 10 Rt. Paved (H) 4 Med. Paved (D) |  |
| Arterial | $\begin{aligned} & 50 \mathrm{mph} \text { or } \\ & \text { more } \end{aligned}$ | 12 | $\begin{aligned} & \text { 8.Each Side } \\ & \text { Paved (G) } \\ & \hline \hline \end{aligned}$ |  |
|  | $\begin{aligned} & \text { Less than } 50 \\ & \text { mph } \end{aligned}$ | 11 (B)(K) | 1-2 Paved | 7-10 Paved |
| Collector Streets ( 1 ) | Commercial $_{\text {I }}$ | 11 (K)(M) | 1-2 Paved | 8-11 Paved |
|  | Residential | 10 | 1-2 Paved | 7-8 Paved |
| Local Streets (1) | $\mathrm{Commercial}_{\text {Industrial }}^{(\mathrm{L})}$ | 11 (K)(M) | 1-2 Paved | 8 Paved |
|  | Residental | 10 (C) | 1-2 Paved | 7 Paved |



## Crash Analysis

- Total of 289 crashes from 2017 through 2021
- $29 \%$ of crashes resulted in injuries or suspected injuries
- Angle, Left Turn, and Fixed Object crash types exceed statewide averages



## Crash Data

Frequency of Crashes by Year and Severity


## Crash Data

Frequency of Crashes by Type of Crash


## Crash Modification Factor



ASSOCIATES ${ }^{\circ}$

Traffic Analysis


## Traffic Volumes



## Traffic Signal Warrants

|  | Warrant Met? |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Intersection | Warrant 1 | Warrant 2 | Warrant 3 | Conclusion |
| Kimberly Lane | Yes | Yes | Yes | Retain |
| UPS Driveway | No | No | Yes | Retain |
| Gibbons Road | No | Yes | Yes | Retain |
| Liberty Lane | No | Yes | Yes | Retain |
| King Richard Parkway | Yes | Yes | Yes | Retain |
| Progress Road | No | No | No | Retain to serve Dayton Progress Corporation |
| Elm Street | Yes | Yes | Yes | Retain |
| Indian Trail | No | No | No | Retain to serve apartment complex |
| Watertower Lane | Yes | Yes | Yes | Retain |

## Alternatives Evaluation

- No Build (5-lane) Alternative
- Existing lane use and geometry
- Build (3-lane) Alternative


## Build (3-lane) Alternative

- Reduce travel lanes from 5 to 3
- Royal Ridge and Indian Trail intersection modifications
- Signal phasing and timing changes
- Add right turn lanes in certain locations


Brown St $-12,700$ ADT Source: Google Maps Streetview


## Build Alternative Option 1 - Three Travel Lanes with Buffered Bike Lanes



St
STRAND
ASSOCIATES

## Build Alternative Option 2 - Three Travel Lanes with Shoulders



## Build Alternative North Transition

- Drop southbound lane at UPS driveway
- Add northbound lane north of UPS driveway



## Build Alternative South Transition

- Drop northbound lane at Watertower Lane
- Add southbound lane south of Watertower Lane



## Royal Ridge and Indian Trail Intersections



## Royal Ridge and Indian Trail Intersections

- Restrict southbound left turns from Alex Rd to Indian Trail
- Restrict eastbound left turns from Royal Ridge to Alex Rd



## Right Turn Lanes

- Criteria include:
- Maintain existing right turn lanes
- Add if right turn movement exceeds 50 vehicles in the peak hour
- Transition from 5-lane to 3-lane section

| Location | Criteria Met |
| :--- | :--- |
| Kimberly Ln (northbound) | Existing RTL; exceeds 50 veh in peak hour |
| UPS Driveway (southbound, no widening) | Transition from 5 lanes to 3 lanes |
| Gibbons Rd (southbound) | Exceeds 50 veh in peak hour |
| King Richard Pkwy (southbound) | Exceeds 50 veh in peak hour |
| Elm St (northbound) | Exceeds 50 veh in peak hour |
| Watertower Ln (northbound, no widening) | Transition from 5 lanes to 3 lanes |
|  |  |

## No Build Capacity Analysis

|  | Level of Service (average delay, seconds) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Intersection | 2024 AM Peak Hour | 2024 PM Peak Hour | 2044 AM Peak Hour | 2044 PM Peak Hour |
| Kimberly Lane | B (13.3) | C (21.6) | B (13.5) | C (22.5) |
| UPS Driveway | A (9.5) | A (3.8) | A (9.6) | A (4.0) |
| Gibbons Road ${ }^{1}$ | A (6.8) | A (6.2) | A (7.1) | A (6.3) |
| Liberty Lane | A (7.1) | A (5.9) | A (7.3) | A (6.0) |
| King Richard Parkway | A (9.5) | A (4.5) | A (9.5) | A (4.4) |
| Progress Road | A (1.7) | A (3.7) | A (1.7) | A (3.7) |
| Elm Street | B (10.9) | B (10.6) | B (10.8) | B (10.8) |
| Indian Trail | A (1.3) | A (1.3) | A (1.3) | A (1.3) |
| Watertower Lane ${ }^{1}$ | B (11.5) | B (15.7) | B (11.5) | B (15.7) |

1. HCM 2000 Results

| LOS | Signalized Intersections <br> (average delay, seconds) | Unsignalized Intersections <br> (average delay, seconds) |
| :---: | :---: | :---: |
| A | $\leq 10$ | $\leq 10$ |
| B | $>10$ to 20 | $>10$ to 15 |
| C | $>20$ to 35 | $>15$ to 25 |
| D | $>35$ to 55 | $>25$ to 35 |
| E | $>55$ to 80 | $>35$ to 50 |
| F | $>80$ | $>50$ |

## Build (3-Lane) Alternative Capacity Analysis

|  | Level of Service (average delay, seconds) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Intersection | 2024 AM Peak Hour | 2024 PM Peak Hour | 2044 AM Peak Hour | 2044 PM Peak Hour |
| Kimberly Lane | B (13.1) | C (21.6) | B (13.3) | C (22.5) |
| UPS Driveway | A (7.7) | A (5.4) | A (7.9) | A (5.8) |
| Gibbons Road ${ }^{1}$ | A (8.4) | A (8.5) | A (8.4) | A (9.1) |
| Liberty Lane | A (3.8) | A (7.9) | A (3.9) | A (8.2) |
| King Richard Parkway | A (8.5) | A (4.8) | A (8.5) | A (4.8) |
| Progress Road | A (2.0) | A (4.0) | A (2.0) | A (4.0) |
| Elm Street | B (15.9) | B (12.4) | B (16.1) | B (12.9) |
| Indian Trail | A (1.6) | A (2.0) | A (1.6) | A (2.2) |
| Watertower Lane ${ }^{1}$ | B (11.9) | B (16.7) | B (11.9) | B (17.1) |

\author{

1. HCM 2000 Results
}

| LOS | Signalized Intersections <br> (average delay, seconds) | Unsignalized Intersections <br> (average delay, seconds) |
| :---: | :---: | :---: |
| A | $\leq 10$ | $\leq 10$ |
| B | $>10$ to 20 | $>10$ to 15 |
| C | $>20$ to 35 | $>15$ to 25 |
| D | $>35$ to 55 | $>25$ to 35 |
| E | $>55$ to 80 | $>35$ to 50 |
| F | $>80$ | $>50$ |

## Capacity Analysis Comparison

|  | Level of Service (average delay, seconds) |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Intersection | 2044 No Build <br> AM Peak Hour | 2044 Build AM <br> Peak Hour | 2044 No Build <br> PM Peak Hour | 2044 Build PM <br> Peak Hour |
| Kimberly Lane | A | B | C |  |$\left|\begin{array}{c}\text { C }\end{array}\right|$

ASSOCIATES ${ }^{\circ}$

## Queue Lengths Comparison

- Gibbons Road
- Southbound queue increased from 115' to 265' (AM)
- Northbound queue increased from 175' to 310' (AM)
- Liberty Lane
- Northbound queue increased from 125' to 350' (PM)
- Watertower Lane
- Northbound queue increased from 120' to 295 (PM)


ASSOCIATES ${ }^{\circ}$

## Anticipated Construction Cost - No Build (5-lane) Alternative to Meet Current Standards

| Work Category | Cost |
| :--- | :--- |
| Roadway | $\$ 3,070,000$ |
| Drainage | $\$ 1,140,000$ |
| Pavement | $\$ 2,790,000$ |
| Traffic Signals and Traffic Control | $\$ 2,100,000$ |
| Incidentals | $\$ 830,000$ |
| Subtotal | $\$ 9,930,000$ |
| Contingency (25\%) | $\$ 2,480,000$ |
| Inflation (11.4\%) | $\$ 1,420,000$ |
| Total Construction Cost | $\$ 13,830,000$ |

[^0]
## Anticipated Construction Cost - Build (3-lane) Alternative

| Work Category | Cost |
| :--- | :--- |
| Roadway | $\$ 110,000$ |
| Drainage | $\$ 190,000$ |
| Pavement | $\$ 1,710,000$ |
| Traffic Signals and Traffic Control | $\$ 430,000$ |
| Incidentals | $\$ 310,000$ |
| Subtotal | $\$ 2,750,000$ |
| Contingency (25\%) | $\$ 690,000$ |
| Inflation (11.4\%) | $\$ 390,000$ |
| Total Construction Cost | $\$ 3,830,000$ |

[^1]- Alex Rd pavement is in poor condition and traffic volumes are declining
- Existing lane widths on Alex Rd are substandard
- Potential contributing factor to top six crash types
- Alternatives
- No Build - 5-lane section (match existing)
- Build - 3-lane section (multiple options for extra pavement)
- Level of Service was maintained with 3-lane section
- Presented in Council Work Session on April 11, 2023
- Comments included:
- How much additional growth can be accommodated with the Build (3-lane) section?
- Results of sensitivity analysis indicate up to 1 percent additional background growth can be accommodated over 20 year horizon.
- Will school buses affect operations?
- School buses will require traffic to stop, similar to other 2 and 3-lane roadways. This may increase travel time slightly at specific times of day but should not have a significant impact on operations.
- Will residents have difficulty exiting driveways?
- This is not anticipated due to the wider lanes and potential for lower speeds.
- High speeds are a concern on the current roadway. What improvements can be made to calm traffic?
- The reduction in thru lanes should result in reduced speeds. Other countermeasures (curb extensions, etc.) could also be considered.
$Q$


[^0]:    *Design and $\mathrm{R} / \mathrm{W}$ costs not included

[^1]:    *Design and R/W costs not included

